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Abstract. We propose a metric to predict the visibility of color half-
tone textures. This metric is represented by the critical viewing dis-
tance below which the halftone textures can be discriminated. It is
intended to be used in the evaluation of the texture visibility of uni-
form color halftone patterns, which plays an important role in half-
tone design and optimization. The metric utilizes the visual threshold
versus intensity function and contrast sensitivity functions for lumi-
nance and chrominance. To verify the metric, the texture visibility
was determined experimentally using a psychovisual experiment.
The critical viewing distances determined by the experiment and
those predicted by the metric were compared, and a good correla-
tion was achieved. The results have shown that the metric is ca-
pable of predicting the visibility over a wide range of texture charac-
teristics. © 2002 SPIE and IS&T. [DOI: 10.1117/1.1455010]

1 Introduction

tone pattern quality evaluation. Comparisons of different
halftone techniques have been performed using the
FWMSE?*®

Other halftone quality metrics include multichannel
model and S-CIELAB metrics. The multichannel model is
distinguished from the single model in that a number of
independent filters that span the frequency domain are
used. The idea of utilizing a multichannel model in quality
evaluation is very similar to that of the FWMSE. The dif-
ference is that the single channel visual model in the
FWMSE is replaced by a multiple channel visual model
that accounts for the frequency and orientation selectivity
of the human eye. One of the multiple channel models is
the visible differences predictdv/DP) proposed by Daly,
which is primarily an image fidelity metric. Other studies
related to the evaluation of halftone quality using multiple
channel models can be found in the work of Mitdaal., of

Halftoning design and optimization largely relies on the Farrellet al, and other§:® Compared to the single channel
quantitative measurement of the quality of halftone pat- model, the multichannel model is more computationally in-
terns. For example, the blue noise mad8NM)™“ algo-  tensive. Another metric that can be utilized in halftone
rithm requires a criterion by which to control the optimiza- quality evaluation is S-CIELAE which is spatially ex-
tion process of half_tone patterns for ez_ach level. Perha_ps_thqended CIELAB color spack. Proposed by Zhang and
most widely used image quality metric or error metric in \yandell, this metric is suitable for images that are not com-

halftone quality assessment is the frequency weighted meaR, iz of |arge uniform areas and it can be used to evaluate
square errofFWMSE). For most of the algorithms that the visibility of halftone texture&?

generate blue noise dithering matrices, quality control is Despi : ; ; :

. S ; Y pite the wide use of FWMSE in halftoning applica-
][reea“j:gcby drgmg;g:‘%hﬁciwmﬁfhit?ggegpé'ggﬁﬁh: tions, it does have limitations. One is that it can only be

q Y . phicitly (in ge ! applied to gray scale halftoning. The second limitation is
review of algorithms for generating blue noise masks Was ot the EWMSE onlv provides an error represented by a
given by Spauldinget al” In their paper, they introduced number, and this doeyspnot ive a clue as t[()) the visualyre-
the different error metrics that were chosen as stopping ' d by thi 9
criteria for the optimization process of generating halftone sponse caused by his error. . . .

The proposal of a metric in this paper is motivated by

patterns. Most of them belong to the category of FWMSE. h d f : r d obiecti t of
In other work, the FWMSE has also been applied to half- |'€ N€€d for an automatic and cbjectiveé measurement o
halftone texture visibility, particularly at the threshold

level. The contribution of the metric is that the calculated
error values of images are linked with perceptual visual

Paper JEI 001007 received Feb. 12, 2001; revised manuscript received Aug. 24’responses by the human visual threshold function. More
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specifically, this metric is capable of predicting the critical
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Fig. 1 lllustration of how to calculate the FWMSE.

o ] ] ) ) Fig. 2 Two gray patches with g=211. Left: Blue noise pattern 1.
viewing distance or displaying resolution so that the half- Right: Blue noise pattern 2.

tone textures of a uniform color pattern appear to be just

noticeable, or whether or not a uniform color halftone pat-

tern is visible to the human eye under a given viewing |n the above equation, note that the DC term &fl)

condition. Designed as a quality metric at the threshold =(0,0) should be excluded from the summation.

level, this metric is useful for halftone design in which a  The FWMSE metric employs the characteristics of hu-

stopping criterion is often required for optimization of each map visual sensitivity as a function of spatial frequency to

gray level, as well as evaluation of the quality and for a moge the visual process, and thus it provides more mean-

comparison among different halftone techniques. __ingful results than the nonweighted MSE. Despite the
In Sec. 1.1, the definition of the FWMSE is given and its meaningful results, its simplicity and generality, the

limitations are illustrated. In Sec. 1.2, the idea that led to FywMSE sometimes is not clear or can produce confusing

the development of this metric is presented. results. Specifically, let us consider the two blue noise half-
tone patterns illustrated in Fig. 2. The two halftone patterns
1.1 FWMSE have the same gray levels but they were generated by dif-

FWMSE is the widely used quality metric in many imaging ferent processes, and thl_Js they have different appearances.
applications. How to calculate the FWMSE is illustrated in !N order to calculate their FWMSE, we must specify the
Fig. 1. In halftoning, the frequency weighted errors be- Print resolution and viewing dlst_an&é.Suppose the print
tween a continuous image and its halftoned version aref€solution for the two patterns is 300 dpi. When viewed
evaluated. The frequency factors used in the evaluation ard’®m 12 in. away, the FWMSEs of the two patterns are
the frequency responses of the human visual system. Thus
larger c\leeigh)t/ing ?actors are used for the freé{uencies to FWMSE;,=0.0816,
which the eye is more sensitive, and smaller weighting fac-
tors are used for the frequencies to which the eye is lesss WMSE,;=0.1079.
sensitive.

Evaluation of the FWMSE is normally conducted in the When viewed from 24 in. away, the FWMSEs of the two
discrete frequency domain. It is illustrated by the example Patterns are
of finding the FWMSE of a uniform halftone pattern with
gray levelgy. Let g(m,n) denote the halftone pattern in FWMSH,; =0.0234,
the image domainG(k,l) denote its discrete Fourier trans-
form (DFT), andH(k,l) be the human visual systefHVS)

function represented in discrete frequendy,f,), and the By comparing the results of the FWMSEs, we conclude
size of the pattern b&lXN. In this example, the original  that the rankings by FWMSE may give different answers
continuous image is a uniform gray patch with gray level of \yhen the viewing distance changes. In this example, when
go, and thus its DFT igygdgo. Then the discrete Fourier  the viewing distance is set to 12 in., the FWMSE of pattern

FWMSE,,=0.0216.

transform of the error image(m,n), E(k,l) is 1 is less than that of pattern 2, indicating that pattern 1 will
result in smaller visual errors than pattern 2; however,
E(k,)=G(k,HH(k,I)—go600- 1) when the viewing distance is set to 24 in., the FWMSE of
pattern 1 is larger than that of pattern 2, which is opposite
In the image domain, Eq1) becomes to the situation of a viewing distance of 12 in. Thus, by
assigning different viewing distances, the FWMSE pro-
e(m,n)=F {G(k,HH(k,)}—=go, (2)  vides different results. However, there is no visual interpre-

tation of the result given by the FWMSE. This example
where F 1 is the inverse discrete Fourier transform. Ac- shows that, although the FWMSE is capable of indicating
cording to Parseval's theorem, the MSE between the con-the relative quality of an image, it cannot relate the error to
tinuous image and its halftone version can be thus calcu-visual experience.

lated by
N-1 N-1 1.2 Metric for Color Halftone Texture Visibility
FWMSE= iz > Gk, DIZH(k, ]2 (3) A halftone is intended to produce the illusion of continuous
N“ o =0 ’ ’ images from binary output states, so the visibility of undes-
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ired halftone textures is an essential factor of the quality of experiment was developed to subjectively determine the
halftone patterns. Since the task of halftoning is to producevisibility of color halftone patterns generated by several
the illusion of a continuous image from a limited number of halftone schemes. The results show that a good correlation
output levels with minimal visual errors, we would then between the distances measured and the distances predicted
expect the ideal implementation of a halftone is to generatewas achieved.

a nearly perfect continuous-like image without perceivable
halftone texture and artifacts. From practical experience,
the viewer will typically view the halftone images at vary- '
ing distances. Thus, the quality can be judged based on thg Study of the Visual Threshold

halftone texture visibility with respect to the viewing dis- Our aim here in Sec. 2 is to provide the background of the
tance. The concern for producing perfect halftone patternsthreshold versus background intensity under different con-
will lead to questions such as, at a typical printing resolu- ditions. Our intention is to choose an appropriate relation-
tion, at what distance will the halftone textures become ship and to utilize it in our halftone quality metric rather
“invisible,” or at a given viewing distance and resolution, than to explore the mechanisms behind visual behavior.
is the texture of the halftone pattern perceivable? Thus aMuch research has been carried out to study human visual
metric is needed to define the critical conditions, generally behavior at the just noticeable threshold level. Experiments
speaking, the viewing distance or resolution, under which were used to find visual thresholds at various conditions

the halftone texture is just perceivable. Represented by theétnd  the

relationship between the threshold and

" . . . . . K H i 15,17 R
critical viewing distance or resolution, this metric actually intensity.>" Threshold being dependent on the back-
is an indicator of the halftone pattern’s quality in terms of ground intensity is referred to as the threshold versus inten-

visibility at the threshold level. The smaller the distance, Sity (TV1) function.

the higher the quality, and vice versa.

The different characteristics of the TVI function indicate

Yu et all* proposed such a halftone texture visibility the consequences of different mechanisms in the visual per-
metric for uniform color halftone patches. It combines a CEPUon process. Three types of visual behavior have been
progressively low-pass filtering operation with a texture de- discovered under normal viewing conditions.

tection model based on Weber's lafwvhich will be intro-
duced in Sec. 2. In the model, the detection threshold was
related to the average intensity of the halftone patterns.
Then they developed a psychovisual experiment to measure
the texture visibility by the distance at which an observer
can see the halftone texture of a color halftone patch with
fixed resolution. The experimentally measured texture vis-
ibility was compared with the cut-off frequency calculated
by the metric. Most of the result correlated well with the
metric, however, there was a group of green patterns that
produced inconsistent results compared to the metric. We
noticed that the average luminance of the green patterns
(about 12 cd/rf) was somewhat lower than that of the other
patterns(from 29 to 47 cd/rf). One explanation of this is
that Weber’s law is not an appropriate model by which to
define the detection threshold for halftone patterns, which
contain a high frequency modulated content.

Therefore, we wanted to reconsider the validity of ap-
plying Weber’s law to this particular application. Extensive
research has been carried out to study the visual threshold
with regard to the intensit}?~*° It was pointed out that
human vision exhibited different behavior under different
conditions, e.g., the background intensity, size, spatial and
temporal frequency of the stimulus, etc. We utilized these
analyses in the halftone quality applications and proposed a
new texture visibility metric based on the threshold versus
intensity functions.

The conditions under which the visual threshold law is
valid is reviewed and an appropriate model is chosen for
the halftone application. Other relevant psychological top-
ics of contrast sensitivity functions of achromatic and chro-
matic stimuli are presented. Then a metric is proposed to
predict the distance at which the halftone texture can be just
distinguished. The psychological background that accounts

1. At low intensity levels, the curve is close to being a
flat line, indicating that the visual threshold is inde-
pendent of the background intensity. This segment is
called the absolute threshold because an absolute
value takes effect regardless of the change in inten-
sity. The threshold function can be represented by

(4)

Al=const,

whereAl denotes the threshold.

2. At midintensity levels, on a log—log scale, the curve
has a slope of 1/2. This means that the threshold is
related to the background intensity as

Al
|—1/§= const,
0

(5

where Al denotes the threshold arig denotes the
background intensity. This relationship is also called
the de Vries—Rose law or square root law because the
threshold is a constant fraction of the square root of
the background illuminance. A theoretical equation
can be derived to explain this relationship by model-
ing the number of photons absorbed by the photore-
ceptors in the retina as a random variable with Pois-
son distribution'81°

3. At higher intensity levels, on a log—log scale, the
slope of the curve is close to 1. This means that the
threshold is proportional to the background illumi-
nance:

Al
— =const.
lo

(6)

for the development of the metric is a combination of the This relationship, that is, that the change in stimulus inten-
visual threshold function and the contrast sensitivity func- sity that can just be discriminated is a constant fraction of
tion. Then, a psychological experiment is addressed. Thethe intensity of the stimulus, is usually referred to as We-
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Fig. 3 lllustration of the luminance and chrominance CSF. The luminance CSF and the chrominance
CSF are represented by the solid line and the dashed line, respectively.

ber’s law. This law is named after E. H. Weber, the German degree(cpd). Their results were consistent with the results
physiologist, who discovered the relationship that applies toreported by van Nes and Boum&hThe luminance levels
many types of sensations of human sensing ordAtisis we examined in our experimef$ec. 3 fell into the range
believed that Weber’s law is a result of some more compli- between the two works, so we adopt the de Vries—Rose law
cated mechanisms. Some theoretical interpretations havéo define the threshold in our model in Sec. 4.
been developed to explore the biological mechanisms of
this visual phenomenor. 3 Contrast Sensitivity Function for Achromatic

The absolute threshold, de Vries—Rose law and Weber's  and Chromatic Gratings
law apply under different circumstances. The transition
from one stage to another stage is not abrupt. Additionally,3.1  Contrast Sensitivity Function

there are no deterministic breakpoints to separate thesg, many imaging applications, the HVS model is approxi-
stages, because the discrimination threshold critically de-5teq by the contrast sensitivity functiéBSP. From the

pends on the stimulus physical parameters, such as the ingnnonent color theory, chromatic perception can be sepa-
tensity, size, duration, and wavelength composition of the (53ted into red or greefRG) and yellow or blugYB), and

target and background. In general, de Vries—Rose law holds;chromatic perception into white or bla@WK).2 The hu-

for targets of small size, with high spatial frequency, or a an visual system is more sensitive to changes of lumi-
short duration, whereas Weber’s law holds for targets of honce than to changes of chrominance with regard to spa-

large size, with low spatial frequency, or a long durafidn. g frequency. The behavior of the sensitivity to luminance
The transition intensity from the de Vries—Rose range 1 6qylation can be modeled by a band pass filter, which has
Weber’s range shifts toward higher luminance for higher 5 grop-off slope at very low spatial frequencies. The behav-
spatial frequencies. _ _ior of the sensitivity to chrominance modulation can be
As mentioned in Sec. 1, we intend to develop a quality jodeled by a low-pass filter which has a much lower cut-
metric at the threshold level. The TVI function provides Us ot frequency than the CSF of luminance. An illustration of
with a psychological basis on which to define the detection ihe different characteristics of CSF for achromatic and

threshold of a uniform color halftone patch, in which the . omatic gratings is shown in Fig. 3, where the solid line

average luminancéor the luminance of the original con- jgicates the luminance CSF and the dashed line indicates
tinuous color patchcan be considered as the background ihe chrominance CSF.

intensity. The question is which stage best characterizes the
V|_sual perception of halftone textures at the_threshold level. 2 HVS Model for Achromatic and Chromatic
Since blue noise patterns have most of their energy locate

; . ; Gratings

in the high frequency range and have little energy at the

low frequency band, it is reasonable to assume that theThe formulas of the HVS model for luminan¢§(r) and
square root law will apply to the stimuli of blue noise pat- chrominanceH(r), respectively, used in this paper are ex-
terns. In addition, recent work by Pait al?* showed that  pressed by the following equations:

the square root law was confirmed as stimulus luminance

up to 50 cd/m with spatial frequency of 16 cycles per H,(f,)=2.20.192+0.114,)exq — (0.114,)*1], (7)

198/ Journal of Electronic Imaging / April 2002 / Vol. 11(2)
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 06/25/2015 Terms of Use: http://spiedl.org/terms



Prediction of the texture visibility

1.980.192+ 0.342f )ex — (0.342f )1,
RGB Image XYZ Image
Ho(f)= if f.>f 00 8
0.9 otherwise,
wheref, in Egs.(7) and(8) denotes the radial spatial fre- luminance red-green yellow-Dlue
guency in units of cycle/deg, anfi,, in Eq. (8) is the Y xY 0A(r-Z)
frequency in whichH(f,) reaches its maximal value. \

The two HVS models are illustrated in Figq. 3. Equation ey
(7) is the formula defined by Sullivaet al2¥*4 without [humanvisual ol ]_ el
modification of the low-pass term. Equati@) is similar in distance d0
form to Eq.(7), except thaf, is scaled by a factor of 3 and
the magnitude is scaled by a factor of 0.9. Thus, the

chrominance CSF is a low-pass function and it has a| tyre @ total STD
steeper drop-off slope than the luminance CSF. The two
scale factors were chosen primarily based on the consider-
ation that the two formulas should be consistent with the

luminance and chrominance sensitivities measured by other Iterative method to
researcher®~?In their results, the low-pass and narrower Jetermine the|

band properties of the chrominance modulation discrimina-
tion were verified, and the corresponding CSF was mea-

sured.
In order to convert the discrete frequency to frequency distance I
in cycle/deg, knowledge of the viewing distandéin units
of in.) and print resolutiorP is required. Assuming that the  Fig. 4 Flow chart showing how to calculate the critical distance.
support of the DFT of the image BXN, and that(k,l) is
the position in the frequency domaif), andf; can then be
calculated by

mkdP properties are utilized to derive the texture visibility metric.
fk:ma 9 The de Vries—Rose law depicts the relationship between the
detectable threshold and the background intensity. For a
and uniform color halftone patch, the background intendity
can be considered as the average luminance of the halftone
7ldP patch. The threshold in the TVI function is referred to as
fl:m)- (10 the amount of intensity increase of the target versus a uni-
form background. To utilize de Vries—Rose law, an ap-
The radial frequency is thus given by proximate threshold which can best represent the concept in
the TVI needs to be defined. In our modal, is estimated
\/f§+ f|2 by the total error from all achromatic and chromatic chan-
fr:T’ 1D nels, in which the error from each channel is defined as the

standard deviation of the HVS filtered channel. Because the
wheres is a scale factor. It is added in E(.1) in order to metric is primarily applied at the threshold level, it is fairly
compensate for the decrease in sensitivity at angles othereasonable to take the standard deviation as the effective

than those in horizontal and vertiAf:aI directiorssis ex- change in intensity.
pressed as a function of the angté We use a uniform color halftone patch to develop this
metric. The halftone image was converted to opponent
_ 1w Ito color space and divided into luminance and chrominance
s(6) cog46)+ : (12) i S
2 2 channels. The CSF function is converted to a digital filter to
model visual behavior in observing an image at a particular
where distance in the discrete frequency domain using @&d).
f Then the luminance and chrominance information is treated
o= arctaré—' , (13 separately according to the characteristi_cs of Qach. The vi-
fi sual threshold from de Vries—Rose law is applied to quan-

tize the visual results to “on” or “off,” which indicates
whether the pattern is either “visible” or “invisible” under
the given viewing condition. Then the critical distance
4 Metric to Predict the Visibility Distance which causes a just noticeable difference is calculated by an
In Secs. 2 and 3, properties of the visual threshold anditerative process. The flow chart for this is illustrated in Fig.
contrast sensitivity were introduced. Here in Sec. 4, these4, and the procedure can be outlined as follows.

and w is chosen empirically as 0.7.

Journal of Electronic Imaging / April 2002/ Vol. 11(2) / 199
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 06/25/2015 Terms of Use: http://spiedl.org/terms



Wang and Parker

1. Start with the displayed image represented in the de-
vice’'s RGB space.

Convert the representation in the device’s RGB space
to the device’s independent XYZ space.

The conversion was implemented by the matrix op-
eration

-

where T is defined in Eq.(19) and it was obtained
from monitor characterization.

The image represented in XYZ space was separated
to one achromatic imagg(m,n) (the luminance
channelg and two chromatic images;(m,n) (red/
green and o,(m,n) (yellow/blug. The method to
separate the three channels was based on(E).

The Y component represents the white/black of the
image. The two chrominance, red/greéR/G) and
yellow/blue (Y/B) can be represented

2.

X
Y
Z

R
G
B

(14

W—K=Y,
R—G=X-Y,
Y-B=0.4Y-2).

(15

Thus the colorimetric image was divided into three
channels, with one representing the luminant infor-
mation and the other two representing two chromi-
nant information. Then the three channels are passed
through the visual response filters which approxi-
mate, in a simple linear sense, the human visual sys-
tem.

Define the visual threshold. The threshold is specified
according to de Vries—Rose law:

t=c*(Y)¥?, (16)

where the constarttwas chosen as 1/40 ands the
luminance channel which can be calculated from Eq.
(15).

Specify an initial distancd,. d, can be assigned to
an arbitrary value.

Calculate the standard deviation STof the image
which is being observed at the current distance. The
method by which to find the error in the observed
image will be addressed later in Ed.9).

Compare the STPto thresholdt in Eq. (16). In-
creaseal if STDy is larger thart, and decreasd if
STD, is smaller thart.

Use the iterative approach to determine the critical
distanced, where the resulting error is equal to
thresholdt in Eq. (16).

The method by which to calculate the total error of the
observed image is outlined below and the flow chart for it
can be found in Fig. 5.

1. Calculate the HVS model of luminance and chromi-
nance in the discrete frequency domain at the current
distance.
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Fig. 5 Flow chart showing how to calculate the total error of the
color image.

2. Obtain the discrete Fourier transforny(k,l),
O4(k,l) and O,(k,I) of y(m,n), o;(m,n), and
0,(m,n), respectively. Apply the corresponding fil-
ters to the images in the Fourier domain.

Y'(k=Y(k])®Hk,l),
O1(k,H=04(kHhoH(K),
Ok =04k @H(k/),
where ® is the element multiplication operator, and
Y'(k,1), O1(k,1), andO,(k,l) are the filtered pat-
terns.
. Take the inverse discrete Fourier transform of
Y'(k,1), Oi(k,1), and O5(k,l). The results are
blurred images/’ (m,n), o;(m,n), ando,(m,n) in
the image domain.

. Find the sum of the standard deviation of the three
images

7

msof Use: http://spiedl.org/terms



Prediction of the texture visibility

STD=stdy') +std 0;) +std 03), (18

0.8
where STD is the observed error in the image.

5 Experiment

We now introduce an experiment to determine the visibility ¢
of halftone patterns subjectively. As explained in Sec. 1, we
will examine the critical viewing conditions that cause mar-
ginal perception experimentally. Since continuously adjust-
ing the display resolution is impractical, we used a fixed
resolution to present the stimuli and changed the viewing
distances instead.

0.4

5.1 Apparatus

A 21 in. SGI monitor was used to display the stimuli. The
monitor was characterized by a tristimulus colorimeter. The
luminance of the white point is 55.2 cdnTThe tristimulus
values ¥, Y, Z) of the RGB phosphors were measured.
The matrixT to convert from the device’s RGB space to the % 02 o4 0.5 0.8
XYZ space was obtained from the following characteriza- X

tion:

0.2

Fig. 6 Chromaticity values of the test patterns plotted in the CIE

0.4070 0.3042 0.2269 1931 chromaticity diagram.

T=| 0.2256 0.6927 0.081F. (19

0.0270 0.1424 1.2043 _ N _
planes without shifting or rotating them. The dot-off-dot

Since all the target patterns in this experiment are half-technique applies a set of specifically designed masks to

tone patterns, the phosphors were at a status of either “on"each of the color planes. The masks are derived from a set

or “off,” so no gamma correction is needed. The advantage of mutually exclusive seed patterns, therefore, this tech-

of using displayed images as stimuli is that it is easy to hique can achieve higher spatial frequency than the dot-on-

program and control the display sequences. dot technique. We chose these four schemes because they
have some interesting characteristics. Bayer’s dithering
5.2  Stimuli generates periodic patterns which are optimal at some lev-

els but objectionable at some other levels. The other three
techniques all generate blue noise halftones, but their dif-
ferences can be quite distinct in some situations.

Gray and three sets of common coldsky blue, skin
color, and greenwere chosen as the colors for the original
uniform patches. For each set of color patches, they had
A ; : . about the same saturation and hue values, but their lumi-
squares. The stimuli were displayed in the center of a uni-p5nce yalues varied. The luminance values of the three sets
form medium gray background. During the experiment, q¢ ¢q\or images were approximately 15%, 25%, 35%, 50%,
only one stimulus was presented on the screen each t'.meGS%, and 75% of the white point of the monitor, which was
'I_'he_expe_nment was conduc_ted _under Cor_lventlonal _Oﬁ'ceGG cd/nt. Thus all the images covered a range of luminance
lighting with fluorescent illumination and without sunlight ¢ el as various values of chromaticity. The values of the
or visible glare on the display. Observers viewed the stimuli chromaticity of the stimuli are plotted in Fig. 6. The lumi-

binocularly. nance of these patches was from about 8 to 50 &dTtmere

The experimental stimuli were chosen as the halftone,, a5 5 total 25 colors, and each of them was halftoned by

images of uniform color patches of different color. The uni- ¢, techniques, so there were 100 color halftone images.
form patches were halftoned with different techniques so '

they exhibit different texture characteristics. Four tech-
niques were used to generate the color halftone patterns
They are Bayer’s ditherinf scalar error diffusiors? single
blue noise maskdot on do}, and mutually exclusive blue The procedure for the experiment basically followed the
noise masksdot off dot.*>>!For the Bayer’s dithering, the  procedure in Yuet al’s experiment* The subjects first
same Bayer’s dithering matrix is used for all RGB planes, stood far away from the monitgabout 23 fi. Under con-

so there is no offset or rotation between them. Scalar errortrolled viewing conditions, at this distance all the halftone
diffusion is a technique whereby each color plane is half- patterns were perceived as uniform patches. Then the sub-
toned with the standard error diffusion individually and jects walked slowly toward the monitor until they could
then combined with other color planes. The dot-on-dot discriminate the textures of the halftone patterns. The sub-
technique applies a single blue noise mask on all the colorjects were allowed to move back and forth slightly to de-

All the stimuli used in this experiment were color halftone
patches. To reduce the effect of the modulation transfer
function (MTF) of the monitor, each pixel was duplicated
twice in both the horizontal and vertical directions, and the
effective display resolution was 43 dpi. The images were
512x512 pixels, and all the stimuli were 15 eni5 cm

5.3  Procedure
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Table 1 Mean results of all the observers. The distances are in units of ft.

Pattern Dot-on-dot technique Dot-off-dot technique Error diffusion Bayer dithering
15% gray 18.9 16.4 13.1 13.7
25% gray 18.3 16.7 15.2 7.07
35% gray 16.1 15.0 12.2 15.6
50% gray 16.3 141 13.4 4.75
65% gray 14.3 134 124 12.1
75% gray 13.8 13.2 11.3 7.47
85% gray 13.6 11.5 10.1 15.1
15% blue 16.8 16.2 12.7 18.0
25% blue 16.7 16.3 13.0 15.9
35% blue 16.5 15.4 12.8 17.2
50% blue 14.3 14.6 11.1 16.0
65% blue 13.9 12.9 11.1 143
75% blue 12.9 12.5 10.2 15.9
15% skin 16.7 16.5 13.0 195
25% skin 16.1 15.9 12.6 13.8
35% skin 15.9 14.9 13.0 143
50% skin 15.7 14.6 9.98 16.0
65% skin 14.7 13.0 11.1 12.0
75% skin 13.0 13.2 11.0 16.3
15% green 16.6 15.0 155 171
25% green 15.4 16.2 14.8 16.4
35% green 16.1 15.2 11.2 17.6
50% green 14.3 14.0 10.6 15.4
65% green 14.3 12.7 11.0 13.8
75% green 13.2 11.9 11.9 15.1

termine the best position. The distances at which they werevisibility was very low. However, for other levels of Bay-

able to just detect the texture of the halftone patterns wereer’s patterns, the visibility was very high, particularly for

recorded. some color patterns.

The whole experiment was divided into four sessions to

prevent observer fatigue. In each session one set of color ) .

images was used as the stimuli. The four sessions werd Discussion

assigned at different but successive time segments. Eac . .

subjgct took only one session in one time sgegment. The®-1 Correlatlon Beween the Metric and

patterns were presented twice in random order. For each ~ EXperimental Results

pattern, the difference between the two measurements wa# threshold factor of 1/40 was used as faatdn Eq. (16).

calculated promptly. If the error was larger than a predeter-This fraction is in the range of a typical factor for percep-

mined value, the pattern would be displayed one more timetion by eye?>3? From the calculations and a comparison

in the same session. with the experimental data, a factor of 1/40 was found to be
the most suitable to define the visual threshold factor. In
this paper, the intensities were scaled according to the ref-

5.4 Results erence white point on the monitor, which was normalized

Six subjects participated in the experiment. The mean val-to 1. The threshold is a fraction of the square root of the

ues of all the observers are listed in Table 1. A graphic intensity, so the factor should be multiplied by a scale fac-

representation of the results will be given in Figs. 7 and 8 tor if another intensity unit is used or if the dynamic range

in Sec. 6, where a comparison with the metric defined in of the display or printing device is changed. There are other

Sec. 4 is illustrated. Generally, the error diffusion patterns two factors, both for the chrominance CSF, that were deter-

resulted in overall smallest distances. This means that themined empirically. One is the factor of spatial frequerfigy

error diffusion patterns had the least amount of visibility (3 in this casg and the other is the factor of the magnitude

among all the types of patterns. The dot-off-dtutually of the CSF(0.9 in this casge The factors were determined

exclusive masKsoutperformed the dot-on-dot patterns, es- to ensure that the two CSF functions possess the fundamen-

pecially for the gray patches. For the Bayer’s patterns attal characteristics of achromatic and chromatic vision and

optimal levels, for example, at 25%, 50%, and 75%, the that they are consistent with the CSF depicted in related
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Fig. 7 Mean experimental results vs the distance from the metric. Fig. 8 Average and standard deviations of the experimental results

and the distance from the metric.

work 2527 Also, the two factors were adjusted within a Y-B channel, anch can be any positive integer. When
small range during metric development, and they had no=1 the interaction is the sum of the two channels. This is
large effect on the results of the metric predicted so thene yyle we applied in the calculation of the total errors in
CSF again is found to p.rowde a us_efgl descnpuqn of the Eq. (18). If vector summatior(corresponding tm=2) is
achromatic and chromatic characteristics of the visual sys-,caq because the luminance errors dominate the total er-
tem in this case. o rors, the effect of chrominance errors is practically elimi-
It can be seen that a strong similarity exists between .thenated. In the case in which chrominance information is ig-
procedure for the experiment and the algorithm to derive ..oy by choosingi=2, the correlation coefficient of the
the critical viewing distance. The algorithm can be consid- 7 . o _
ered as simulating the process of walking back and forthdf':lta isr =0.84 Instead of—0.58 y\{hem—_l'. AIthough t.he
difference seems to not be significant, it is not sufficient to

and adjusting to the position at which the observer can del th i f color halft ich ith lumi
barely discriminate the texture. Changing the viewing dis- M0d€! the perception ot color hafitone patches with iumi-
nance only, so scalar summation is used to estimate the

tance causes a shift of the HVS model in the discrete fre- ; . : !
yverall error in our model. For image quality metrics, there

gquency domain, and thus causes a change in frequency co ; : .

tent that could be captured by the eye. As the observerd® other techniques with Whlch_to evaluate the_ _overall_ er-

walks closer to the monitor, the spatial variation of the ror from all the channels according to the specific apphcg-
dions. For example, Daly employed the method of probabil-

ity summation to calculate the overall influence of errors

rom all the bands in the algorithm of visible differences

predictor’

total error just exceeds the visual threshold.

The experimental results and the distances calculated b
the proposed metric are illustrated in Figs. 7 and 8. Xhe
axes in Figs. 7 and 8 are the distances predicted by the6 2 Discussions on the Experiment
metric, and they axes are the experimental results. Figure 7 ] i o
illustrates the mean values for all the observers versus théAt the average distance, which was about 14 ft, the stimuli
predicted values. Figure 8 is the same as Fig. 7 except thagubtended an angle of 2°. The experiment is not a fixed
standard deviations are included. By inspecting Figs. 7 anddistance experiment, so adjustment of the viewing distances
8, it can be seen that a good linear correlation exists be-caused changes in focal length. The 5% and 95% values of

tween the experimental results and the metrics. The lineatthe distances measured in the experiment are 10 and 17 ft,
correlation coefficient of the data is=0.88. which is equal to 3 and 5.1 m, respectively. The change in

The standard deviation of the images was used as théoc_al_length between these two distances is about 0.14 D.
average of the increment in intensity versus the uniform 'NiS is @ small number, so the effect of accommodation can
background. Kaiser and Boynton have discussed the issu&€ ignored.
of interaction between opponent color chanfieid they licati £ th .
specified the empirical rule for the interaction as: 6.3 Application of the Metric
This experiment is not intended to study the strict condi-
F=[|r—g|"+]y—b|"]*", (20) tions of the visual threshold function of halftone patterns. It

emphasizes that the metric developed by this model can

whereF is the overall effect caused by the R-G channel and faithfully predict the texture visibility of color halftone pat-
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terns. The intensity levels tested in this experiment werehas been shown to correlate well with the experimental

from about 8 to 50 cd/fa For hardcopy prints illuminated

results. The potential application of this metric is not lim-

by typical office lighting, the luminance may be beyond the ited to a comparison of the quality of uniform color half-

range tested using the cathode ray tQB&T) display. For
intensity higher than 50 cd/ror lower than 8 cd/m) the

tone patches. As was mentioned earlier in this paper, it can
be incorporated into halftone algorithms as an objective

validity of the de Vries—Rose law is not verified, nor is it quality assessment in addition to the FWMSE, or as a cri-
guaranteed. Our suggestion is to use a smoothly changetkerion for simultaneous optimization of the blue noise
threshold function that combines the de Vries—Rose lawmask.

and Weber’'s law when necessary. However, for a small
dynamic range, e.g., one from 50 to 70 c8/rhe differ-
ence in threshold determined by de Vries—Rose’s law and 1.
by Weber’s law is not significant, so de Vries—Rose law can
be extended to the application at intensity levels higher
than 50 cd/m

The halftone patterns generated by different techniques 3:
usually have some distinct characteristics. For example,
Bayer’s dithering generates periodic patterns. These pat- 4.
terns are optimal at some levels, whereas the patterns may
be quite visible for other levels. The patterns generated by s,
error diffusion and the blue noise mask also have some
different features, although they are both blue noise genera- ¢
tors. Despite the various halftone characteristics, our metric
is capable of producing good predictions for all cases. Al-
though the patterns selected in the experiment may not rep-
resent halftone techniques in general, the approach is inde-
pendent of the texture characteristics and thus can apply to®
various halftone techniques.

Increasing the viewing distance will have approximately
the same effect as increasing the print or display resolution ™
in the case for which the perceived halftone images under
the condition that there are no significant dot gain or fre-
quency modulation effects. This is because the scaling fac-
tor of converting discrete frequency to continuous fre-
quency is the product of the print resolution and viewing %

distance. In our experiment, the quality is evaluated by the12.

critical distance. It can also be used to find out the critical
resolution if a typical viewing distance is assumed. If this ;5
model is used under given conditions, such as a given
viewing distance and display resolution, a single number
output will be produced to indicate whether the texture vis-
ibility is under or above the threshold.

This metric can be a guide to evaluating the quality of -
the resulting halftone patterns. Assessment of texture vis-

ibility of halftone patterns is usually based on an assess-16.
ment of uniform halftone patches. Comparison of the half- ;;

tone images of a gray ramp is a basic and important

evaluation in most halftone evaluations. A blue noise dither 18-

matrix is actually composed of binary halftone images at all
the gray levels. The overall quality of the blue noise mask 19.
can be obtained by inspecting the critical distances of all
the levels. For example, Bayer’s dithering is proved to be
optimal at some specific levels but it does not necessarily21.
indicate that the Bayer's matrix is optimal as a whole. The ,,
metric can be applied directly to quality assessment of half-
tone patterns of solid patches, and thus can aid in blue nois%3
mask design.

. 24,
7 Conclusion

It this paper, we proposed a simple but fundamental mea-2s,
surement of color halftone texture visibility at the threshold
level. Represented by the critical viewing distance at which
the halftone textures can just be discriminated, this metric27.
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