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Abstract. We propose a metric to predict the visibility of color half-
tone textures. This metric is represented by the critical viewing dis-
tance below which the halftone textures can be discriminated. It is
intended to be used in the evaluation of the texture visibility of uni-
form color halftone patterns, which plays an important role in half-
tone design and optimization. The metric utilizes the visual threshold
versus intensity function and contrast sensitivity functions for lumi-
nance and chrominance. To verify the metric, the texture visibility
was determined experimentally using a psychovisual experiment.
The critical viewing distances determined by the experiment and
those predicted by the metric were compared, and a good correla-
tion was achieved. The results have shown that the metric is ca-
pable of predicting the visibility over a wide range of texture charac-
teristics. © 2002 SPIE and IS&T. [DOI: 10.1117/1.1455010]

1 Introduction

Halftoning design and optimization largely relies on t
quantitative measurement of the quality of halftone p
terns. For example, the blue noise mask~BNM!1,2 algo-
rithm requires a criterion by which to control the optimiz
tion process of halftone patterns for each level. Perhaps
most widely used image quality metric or error metric
halftone quality assessment is the frequency weighted m
square error~FWMSE!. For most of the algorithms tha
generate blue noise dithering matrices, quality contro
realized by minimizing the FWMSE either explicitly~in the
frequency domain! or implicitly ~in the image domain!. A
review of algorithms for generating blue noise masks w
given by Spauldinget al.3 In their paper, they introduced
the different error metrics that were chosen as stopp
criteria for the optimization process of generating halfto
patterns. Most of them belong to the category of FWMS
In other work, the FWMSE has also been applied to ha
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tone pattern quality evaluation. Comparisons of differe
halftone techniques have been performed using
FWMSE.4–6

Other halftone quality metrics include multichann
model and S-CIELAB metrics. The multichannel model
distinguished from the single model in that a number
independent filters that span the frequency domain
used. The idea of utilizing a multichannel model in qual
evaluation is very similar to that of the FWMSE. The di
ference is that the single channel visual model in
FWMSE is replaced by a multiple channel visual mod
that accounts for the frequency and orientation selectiv
of the human eye. One of the multiple channel models
the visible differences predictor~VDP! proposed by Daly,7

which is primarily an image fidelity metric. Other studie
related to the evaluation of halftone quality using multip
channel models can be found in the work of Mitsaet al., of
Farrellet al., and others.8,9 Compared to the single chann
model, the multichannel model is more computationally
tensive. Another metric that can be utilized in halfto
quality evaluation is S-CIELAB10 which is spatially ex-
tended CIELAB color space.11 Proposed by Zhang an
Wandell, this metric is suitable for images that are not co
prised of large uniform areas and it can be used to evalu
the visibility of halftone textures.12

Despite the wide use of FWMSE in halftoning applic
tions, it does have limitations. One is that it can only
applied to gray scale halftoning. The second limitation
that the FWMSE only provides an error represented b
number, and this does not give a clue as to the visual
sponse caused by this error.

The proposal of a metric in this paper is motivated
the need for an automatic and objective measuremen
halftone texture visibility, particularly at the thresho
level. The contribution of the metric is that the calculat
error values of images are linked with perceptual vis
responses by the human visual threshold function. M
specifically, this metric is capable of predicting the critic

,
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viewing distance or displaying resolution so that the ha
tone textures of a uniform color pattern appear to be
noticeable, or whether or not a uniform color halftone p
tern is visible to the human eye under a given viewi
condition. Designed as a quality metric at the thresh
level, this metric is useful for halftone design in which
stopping criterion is often required for optimization of ea
gray level, as well as evaluation of the quality and for
comparison among different halftone techniques.

In Sec. 1.1, the definition of the FWMSE is given and
limitations are illustrated. In Sec. 1.2, the idea that led
the development of this metric is presented.

1.1 FWMSE

FWMSE is the widely used quality metric in many imagin
applications. How to calculate the FWMSE is illustrated
Fig. 1. In halftoning, the frequency weighted errors b
tween a continuous image and its halftoned version
evaluated. The frequency factors used in the evaluation
the frequency responses of the human visual system. T
larger weighting factors are used for the frequencies
which the eye is more sensitive, and smaller weighting f
tors are used for the frequencies to which the eye is
sensitive.

Evaluation of the FWMSE is normally conducted in th
discrete frequency domain. It is illustrated by the exam
of finding the FWMSE of a uniform halftone pattern wit
gray levelg0 . Let g(m,n) denote the halftone pattern i
the image domain,G(k,l ) denote its discrete Fourier tran
form ~DFT!, andH(k,l ) be the human visual system~HVS!
function represented in discrete frequency (f k , f l), and the
size of the pattern beN3N. In this example, the origina
continuous image is a uniform gray patch with gray level
g0 , and thus its DFT isg0d00. Then the discrete Fourie
transform of the error imagee(m,n), E(k,l ) is

E~k,l !5G~k,l !H~k,l !2g0d00. ~1!

In the image domain, Eq.~1! becomes

e~m,n!5F2$G~k,l !H~k,l !%2g0 , ~2!

whereF21 is the inverse discrete Fourier transform. A
cording to Parseval’s theorem, the MSE between the c
tinuous image and its halftone version can be thus ca
lated by

FWMSE5
1

N2 (
k50

N21

(
l 50

N21

uG~k,l !u2uH~k,l !u2. ~3!

Fig. 1 Illustration of how to calculate the FWMSE.
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In the above equation, note that the DC term of (k,l )
5(0,0) should be excluded from the summation.

The FWMSE metric employs the characteristics of h
man visual sensitivity as a function of spatial frequency
model the visual process, and thus it provides more me
ingful results than the nonweighted MSE. Despite t
meaningful results, its simplicity and generality, th
FWMSE sometimes is not clear or can produce confus
results. Specifically, let us consider the two blue noise h
tone patterns illustrated in Fig. 2. The two halftone patte
have the same gray levels but they were generated by
ferent processes, and thus they have different appeara
In order to calculate their FWMSE, we must specify t
print resolution and viewing distance.13 Suppose the print
resolution for the two patterns is 300 dpi. When view
from 12 in. away, the FWMSEs of the two patterns are

FWMSEb150.0816,

FWMSEb250.1079.

When viewed from 24 in. away, the FWMSEs of the tw
patterns are

FWMSEb150.0234,

FWMSEb250.0216.

By comparing the results of the FWMSEs, we conclu
that the rankings by FWMSE may give different answe
when the viewing distance changes. In this example, w
the viewing distance is set to 12 in., the FWMSE of patte
1 is less than that of pattern 2, indicating that pattern 1 w
result in smaller visual errors than pattern 2; howev
when the viewing distance is set to 24 in., the FWMSE
pattern 1 is larger than that of pattern 2, which is oppos
to the situation of a viewing distance of 12 in. Thus,
assigning different viewing distances, the FWMSE pr
vides different results. However, there is no visual interp
tation of the result given by the FWMSE. This examp
shows that, although the FWMSE is capable of indicat
the relative quality of an image, it cannot relate the error
visual experience.

1.2 Metric for Color Halftone Texture Visibility

A halftone is intended to produce the illusion of continuo
images from binary output states, so the visibility of unde

Fig. 2 Two gray patches with g5211. Left: Blue noise pattern 1.
Right: Blue noise pattern 2.
erms of Use: http://spiedl.org/terms
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ired halftone textures is an essential factor of the quality
halftone patterns. Since the task of halftoning is to prod
the illusion of a continuous image from a limited number
output levels with minimal visual errors, we would the
expect the ideal implementation of a halftone is to gene
a nearly perfect continuous-like image without perceiva
halftone texture and artifacts. From practical experien
the viewer will typically view the halftone images at var
ing distances. Thus, the quality can be judged based on
halftone texture visibility with respect to the viewing di
tance. The concern for producing perfect halftone patte
will lead to questions such as, at a typical printing reso
tion, at what distance will the halftone textures beco
‘‘invisible,’’ or at a given viewing distance and resolution
is the texture of the halftone pattern perceivable? Thu
metric is needed to define the critical conditions, genera
speaking, the viewing distance or resolution, under wh
the halftone texture is just perceivable. Represented by
critical viewing distance or resolution, this metric actua
is an indicator of the halftone pattern’s quality in terms
visibility at the threshold level. The smaller the distanc
the higher the quality, and vice versa.

Yu et al.14 proposed such a halftone texture visibili
metric for uniform color halftone patches. It combines
progressively low-pass filtering operation with a texture d
tection model based on Weber’s law,14 which will be intro-
duced in Sec. 2. In the model, the detection threshold
related to the average intensity of the halftone patte
Then they developed a psychovisual experiment to mea
the texture visibility by the distance at which an observ
can see the halftone texture of a color halftone patch w
fixed resolution. The experimentally measured texture v
ibility was compared with the cut-off frequency calculat
by the metric. Most of the result correlated well with th
metric, however, there was a group of green patterns
produced inconsistent results compared to the metric.
noticed that the average luminance of the green patt
~about 12 cd/m2! was somewhat lower than that of the oth
patterns~from 29 to 47 cd/m2!. One explanation of this is
that Weber’s law is not an appropriate model by which
define the detection threshold for halftone patterns, wh
contain a high frequency modulated content.

Therefore, we wanted to reconsider the validity of a
plying Weber’s law to this particular application. Extensi
research has been carried out to study the visual thres
with regard to the intensity.15–19 It was pointed out that
human vision exhibited different behavior under differe
conditions, e.g., the background intensity, size, spatial
temporal frequency of the stimulus, etc. We utilized the
analyses in the halftone quality applications and propose
new texture visibility metric based on the threshold vers
intensity functions.

The conditions under which the visual threshold law
valid is reviewed and an appropriate model is chosen
the halftone application. Other relevant psychological to
ics of contrast sensitivity functions of achromatic and ch
matic stimuli are presented. Then a metric is proposed
predict the distance at which the halftone texture can be
distinguished. The psychological background that accou
for the development of the metric is a combination of t
visual threshold function and the contrast sensitivity fun
tion. Then, a psychological experiment is addressed.
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 06/25/2015 T
,

e

s

e

s
.
e

-

t
e
s

ld

d

a

r

t
s

e

experiment was developed to subjectively determine
visibility of color halftone patterns generated by seve
halftone schemes. The results show that a good correla
between the distances measured and the distances pred
was achieved.

2 Study of the Visual Threshold

Our aim here in Sec. 2 is to provide the background of
threshold versus background intensity under different c
ditions. Our intention is to choose an appropriate relatio
ship and to utilize it in our halftone quality metric rathe
than to explore the mechanisms behind visual behav
Much research has been carried out to study human vi
behavior at the just noticeable threshold level. Experime
were used to find visual thresholds at various conditio
and the relationship between the threshold a
intensity.15,17 Threshold being dependent on the bac
ground intensity is referred to as the threshold versus in
sity ~TVI ! function.

The different characteristics of the TVI function indica
the consequences of different mechanisms in the visual
ception process. Three types of visual behavior have b
discovered under normal viewing conditions.

1. At low intensity levels, the curve is close to being
flat line, indicating that the visual threshold is ind
pendent of the background intensity. This segmen
called the absolute threshold because an abso
value takes effect regardless of the change in int
sity. The threshold function can be represented by

DI5const, ~4!

whereDI denotes the threshold.

2. At midintensity levels, on a log–log scale, the cur
has a slope of 1/2. This means that the threshold
related to the background intensity as

DI

I0
1/25const, ~5!

where DI denotes the threshold andI 0 denotes the
background intensity. This relationship is also call
the de Vries–Rose law or square root law because
threshold is a constant fraction of the square root
the background illuminance. A theoretical equati
can be derived to explain this relationship by mod
ing the number of photons absorbed by the photo
ceptors in the retina as a random variable with Po
son distribution.18,19

3. At higher intensity levels, on a log–log scale, th
slope of the curve is close to 1. This means that
threshold is proportional to the background illum
nance:

DI

I0
5const. ~6!

This relationship, that is, that the change in stimulus int
sity that can just be discriminated is a constant fraction
the intensity of the stimulus, is usually referred to as W
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 197
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Fig. 3 Illustration of the luminance and chrominance CSF. The luminance CSF and the chrominance
CSF are represented by the solid line and the dashed line, respectively.
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ber’s law. This law is named after E. H. Weber, the Germ
physiologist, who discovered the relationship that applie
many types of sensations of human sensing organs.20 It is
believed that Weber’s law is a result of some more com
cated mechanisms. Some theoretical interpretations h
been developed to explore the biological mechanisms
this visual phenomenon.21

The absolute threshold, de Vries–Rose law and Web
law apply under different circumstances. The transit
from one stage to another stage is not abrupt. Additiona
there are no deterministic breakpoints to separate th
stages, because the discrimination threshold critically
pends on the stimulus physical parameters, such as th
tensity, size, duration, and wavelength composition of
target and background. In general, de Vries–Rose law h
for targets of small size, with high spatial frequency, o
short duration, whereas Weber’s law holds for targets
large size, with low spatial frequency, or a long duration21

The transition intensityI from the de Vries–Rose range t
Weber’s range shifts toward higher luminance for high
spatial frequencies.

As mentioned in Sec. 1, we intend to develop a qua
metric at the threshold level. The TVI function provides
with a psychological basis on which to define the detect
threshold of a uniform color halftone patch, in which th
average luminance~or the luminance of the original con
tinuous color patch! can be considered as the backgrou
intensity. The question is which stage best characterizes
visual perception of halftone textures at the threshold le
Since blue noise patterns have most of their energy loc
in the high frequency range and have little energy at
low frequency band, it is reasonable to assume that
square root law will apply to the stimuli of blue noise pa
terns. In addition, recent work by Peliet al.22 showed that
the square root law was confirmed as stimulus lumina
up to 50 cd/m2 with spatial frequency of 16 cycles pe
ctronic Imaging / April 2002 / Vol. 11(2)
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degree~cpd!. Their results were consistent with the resu
reported by van Nes and Bouman.15 The luminance levels
we examined in our experiment~Sec. 5! fell into the range
between the two works, so we adopt the de Vries–Rose
to define the threshold in our model in Sec. 4.

3 Contrast Sensitivity Function for Achromatic
and Chromatic Gratings

3.1 Contrast Sensitivity Function

In many imaging applications, the HVS model is appro
mated by the contrast sensitivity function~CSF!. From the
opponent color theory, chromatic perception can be se
rated into red or green~RG! and yellow or blue~YB!, and
achromatic perception into white or black~WK!.23 The hu-
man visual system is more sensitive to changes of lu
nance than to changes of chrominance with regard to s
tial frequency. The behavior of the sensitivity to luminan
modulation can be modeled by a band pass filter, which
a drop-off slope at very low spatial frequencies. The beh
ior of the sensitivity to chrominance modulation can
modeled by a low-pass filter which has a much lower c
off frequency than the CSF of luminance. An illustration
the different characteristics of CSF for achromatic a
chromatic gratings is shown in Fig. 3, where the solid li
indicates the luminance CSF and the dashed line indic
the chrominance CSF.

3.2 HVS Model for Achromatic and Chromatic
Gratings

The formulas of the HVS model for luminanceHl(r ) and
chrominanceHc(r ), respectively, used in this paper are e
pressed by the following equations:

Hl~ f r !52.2~0.19210.114f r !exp@2~0.114f r !
1.1#, ~7!
erms of Use: http://spiedl.org/terms
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Hc~ f r !5H 1.98~0.19210.342f r !exp@2~0.342f r !
1.1#,

if f r. f max,

0.9 otherwise,

~8!

where f r in Eqs.~7! and ~8! denotes the radial spatial fre
quency in units of cycle/deg, andf max in Eq. ~8! is the
frequency in whichHc( f r) reaches its maximal value.

The two HVS models are illustrated in Fig. 3. Equati
~7! is the formula defined by Sullivanet al.13,24 without
modification of the low-pass term. Equation~8! is similar in
form to Eq.~7!, except thatf r is scaled by a factor of 3 an
the magnitude is scaled by a factor of 0.9. Thus,
chrominance CSF is a low-pass function and it has
steeper drop-off slope than the luminance CSF. The
scale factors were chosen primarily based on the consi
ation that the two formulas should be consistent with
luminance and chrominance sensitivities measured by o
researchers.25–27In their results, the low-pass and narrow
band properties of the chrominance modulation discrimi
tion were verified, and the corresponding CSF was m
sured.

In order to convert the discrete frequency to frequen
in cycle/deg, knowledge of the viewing distanced ~in units
of in.! and print resolutionP is required. Assuming that th
support of the DFT of the image isN3N, and that~k,l! is
the position in the frequency domain,f k and f l can then be
calculated by

f k5
pkdP

N180
, ~9!

and

f l5
p ldP

N180
. ~10!

The radial frequency is thus given by

f r5
Af k

21 f l
2

s
, ~11!

wheres is a scale factor. It is added in Eq.~11! in order to
compensate for the decrease in sensitivity at angles o
than those in horizontal and vertical directions.s is ex-
pressed as a function of the angleu:24

s~u!5
12v

2
cos~4u!1

11v

2
, ~12!

where

u5arctanS f l

f k
D , ~13!

andv is chosen empirically as 0.7.

4 Metric to Predict the Visibility Distance

In Secs. 2 and 3, properties of the visual threshold
contrast sensitivity were introduced. Here in Sec. 4, th
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 06/25/2015 T
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properties are utilized to derive the texture visibility metr
The de Vries–Rose law depicts the relationship between
detectable threshold and the background intensity. Fo
uniform color halftone patch, the background intensityI
can be considered as the average luminance of the half
patch. The threshold in the TVI function is referred to
the amount of intensity increase of the target versus a
form background. To utilize de Vries–Rose law, an a
proximate threshold which can best represent the conce
the TVI needs to be defined. In our model,DI is estimated
by the total error from all achromatic and chromatic cha
nels, in which the error from each channel is defined as
standard deviation of the HVS filtered channel. Because
metric is primarily applied at the threshold level, it is fair
reasonable to take the standard deviation as the effec
change in intensity.

We use a uniform color halftone patch to develop th
metric. The halftone image was converted to oppon
color space and divided into luminance and chromina
channels. The CSF function is converted to a digital filter
model visual behavior in observing an image at a particu
distance in the discrete frequency domain using Eq.~11!.
Then the luminance and chrominance information is trea
separately according to the characteristics of each. The
sual threshold from de Vries–Rose law is applied to qu
tize the visual results to ‘‘on’’ or ‘‘off,’’ which indicates
whether the pattern is either ‘‘visible’’ or ‘‘invisible’’ under
the given viewing condition. Then the critical distanc
which causes a just noticeable difference is calculated by
iterative process. The flow chart for this is illustrated in F
4, and the procedure can be outlined as follows.

Fig. 4 Flow chart showing how to calculate the critical distance.
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 199
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1. Start with the displayed image represented in the
vice’s RGB space.

2. Convert the representation in the device’s RGB sp
to the device’s independent XYZ space.
The conversion was implemented by the matrix o
eration

SX
Y
Z
D5T3SR

G
B
D , ~14!

whereT is defined in Eq.~19! and it was obtained
from monitor characterization.

3. The image represented in XYZ space was separ
to one achromatic imagey(m,n) ~the luminance
channels! and two chromatic imageso1(m,n) ~red/
green! and o2(m,n) ~yellow/blue!. The method to
separate the three channels was based on Eq.~15!.
The Y component represents the white/black of t
image. The two chrominance, red/green~R/G! and
yellow/blue ~Y/B! can be represented by23

HW2K5Y,
R2G5X2Y,
Y2B50.4~Y2Z!.

~15!

Thus the colorimetric image was divided into thr
channels, with one representing the luminant inf
mation and the other two representing two chrom
nant information. Then the three channels are pas
through the visual response filters which appro
mate, in a simple linear sense, the human visual s
tem.

4. Define the visual threshold. The threshold is specifi
according to de Vries–Rose law:

t5c* ~Y!1/2, ~16!

where the constantc was chosen as 1/40 andY is the
luminance channel which can be calculated from E
~15!.

5. Specify an initial distanced0 . d0 can be assigned to
an arbitrary value.

6. Calculate the standard deviation STD0 of the image
which is being observed at the current distance. T
method by which to find the error in the observ
image will be addressed later in Eq.~18!.

7. Compare the STD0 to thresholdt in Eq. ~16!. In-
creased0 if STD0 is larger thant, and decreased0 if
STD0 is smaller thant.

8. Use the iterative approach to determine the criti
distance d, where the resulting error is equal t
thresholdt in Eq. ~16!.

The method by which to calculate the total error of t
observed image is outlined below and the flow chart fo
can be found in Fig. 5.

1. Calculate the HVS model of luminance and chrom
nance in the discrete frequency domain at the curr
distance.
200 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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2. Obtain the discrete Fourier transformY(k,l ),
O1(k,l ) and O2(k,l ) of y(m,n), o1(m,n), and
o2(m,n), respectively. Apply the corresponding fi
ters to the images in the Fourier domain.

H Y8~k,l!5Y~k,l!^Hl~k,l!,
O18~k,l!5O1~k,l!^Hc~k,l!,

O28~k,l!5O2~k,l!^Hc~k,l!,
~17!

where ^ is the element multiplication operator, an
Y8(k,l ), O18(k,l ), and O28(k,l ) are the filtered pat-
terns.

3. Take the inverse discrete Fourier transform
Y8(k,l ), O18(k,l ), and O28(k,l ). The results are
blurred imagesy8(m,n), o18(m,n), and o28(m,n) in
the image domain.

4. Find the sum of the standard deviation of the thr
images

Fig. 5 Flow chart showing how to calculate the total error of the
color image.
erms of Use: http://spiedl.org/terms
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STD5std~y8!1std~o18!1std~o28!, ~18!

where STD is the observed error in the image.

5 Experiment

We now introduce an experiment to determine the visibi
of halftone patterns subjectively. As explained in Sec. 1,
will examine the critical viewing conditions that cause ma
ginal perception experimentally. Since continuously adju
ing the display resolution is impractical, we used a fix
resolution to present the stimuli and changed the view
distances instead.

5.1 Apparatus

A 21 in. SGI monitor was used to display the stimuli. T
monitor was characterized by a tristimulus colorimeter. T
luminance of the white point is 55.2 cd/m2. The tristimulus
values (X, Y, Z) of the RGB phosphors were measure
The matrixT to convert from the device’s RGB space to t
XYZ space was obtained from the following characteri
tion:

T5S 0.4070 0.3042 0.2269

0.2256 0.6927 0.0817

0.0270 0.1424 1.2043
D . ~19!

Since all the target patterns in this experiment are h
tone patterns, the phosphors were at a status of either ‘
or ‘‘off,’’ so no gamma correction is needed. The advanta
of using displayed images as stimuli is that it is easy
program and control the display sequences.

5.2 Stimuli

All the stimuli used in this experiment were color halfton
patches. To reduce the effect of the modulation trans
function ~MTF! of the monitor, each pixel was duplicate
twice in both the horizontal and vertical directions, and t
effective display resolution was 43 dpi. The images w
5123512 pixels, and all the stimuli were 15 cm315 cm
squares. The stimuli were displayed in the center of a u
form medium gray background. During the experime
only one stimulus was presented on the screen each t
The experiment was conducted under conventional of
lighting with fluorescent illumination and without sunligh
or visible glare on the display. Observers viewed the stim
binocularly.

The experimental stimuli were chosen as the halfto
images of uniform color patches of different color. The u
form patches were halftoned with different techniques
they exhibit different texture characteristics. Four tec
niques were used to generate the color halftone patte
They are Bayer’s dithering,28 scalar error diffusion,29 single
blue noise mask~dot on dot!, and mutually exclusive blue
noise masks~dot off dot!.30,31For the Bayer’s dithering, the
same Bayer’s dithering matrix is used for all RGB plan
so there is no offset or rotation between them. Scalar e
diffusion is a technique whereby each color plane is h
toned with the standard error diffusion individually an
then combined with other color planes. The dot-on-d
technique applies a single blue noise mask on all the c
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planes without shifting or rotating them. The dot-off-d
technique applies a set of specifically designed mask
each of the color planes. The masks are derived from a
of mutually exclusive seed patterns, therefore, this te
nique can achieve higher spatial frequency than the dot
dot technique. We chose these four schemes because
have some interesting characteristics. Bayer’s dither
generates periodic patterns which are optimal at some
els but objectionable at some other levels. The other th
techniques all generate blue noise halftones, but their
ferences can be quite distinct in some situations.

Gray and three sets of common colors~sky blue, skin
color, and green! were chosen as the colors for the origin
uniform patches. For each set of color patches, they
about the same saturation and hue values, but their lu
nance values varied. The luminance values of the three
of color images were approximately 15%, 25%, 35%, 50
65%, and 75% of the white point of the monitor, which w
66 cd/m2. Thus all the images covered a range of luminan
as well as various values of chromaticity. The values of
chromaticity of the stimuli are plotted in Fig. 6. The lum
nance of these patches was from about 8 to 50 cd/m2. There
was a total 25 colors, and each of them was halftoned
four techniques, so there were 100 color halftone imag

5.3 Procedure

The procedure for the experiment basically followed t
procedure in Yuet al.’s experiment.14 The subjects first
stood far away from the monitor~about 23 ft!. Under con-
trolled viewing conditions, at this distance all the halfto
patterns were perceived as uniform patches. Then the
jects walked slowly toward the monitor until they cou
discriminate the textures of the halftone patterns. The s
jects were allowed to move back and forth slightly to d

Fig. 6 Chromaticity values of the test patterns plotted in the CIE
1931 chromaticity diagram.
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Table 1 Mean results of all the observers. The distances are in units of ft.

Pattern Dot-on-dot technique Dot-off-dot technique Error diffusion Bayer dithering

15% gray 18.9 16.4 13.1 13.7

25% gray 18.3 16.7 15.2 7.07

35% gray 16.1 15.0 12.2 15.6

50% gray 16.3 14.1 13.4 4.75

65% gray 14.3 13.4 12.4 12.1

75% gray 13.8 13.2 11.3 7.47

85% gray 13.6 11.5 10.1 15.1

15% blue 16.8 16.2 12.7 18.0

25% blue 16.7 16.3 13.0 15.9

35% blue 16.5 15.4 12.8 17.2

50% blue 14.3 14.6 11.1 16.0

65% blue 13.9 12.9 11.1 14.3

75% blue 12.9 12.5 10.2 15.9

15% skin 16.7 16.5 13.0 19.5

25% skin 16.1 15.9 12.6 13.8

35% skin 15.9 14.9 13.0 14.3

50% skin 15.7 14.6 9.98 16.0

65% skin 14.7 13.0 11.1 12.0

75% skin 13.0 13.2 11.0 16.3

15% green 16.6 15.0 15.5 17.1

25% green 15.4 16.2 14.8 16.4

35% green 16.1 15.2 11.2 17.6

50% green 14.3 14.0 10.6 15.4

65% green 14.3 12.7 11.0 13.8

75% green 13.2 11.9 11.9 15.1
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termine the best position. The distances at which they w
able to just detect the texture of the halftone patterns w
recorded.

The whole experiment was divided into four sessions
prevent observer fatigue. In each session one set of c
images was used as the stimuli. The four sessions w
assigned at different but successive time segments. E
subject took only one session in one time segment.
patterns were presented twice in random order. For e
pattern, the difference between the two measurements
calculated promptly. If the error was larger than a prede
mined value, the pattern would be displayed one more t
in the same session.

5.4 Results

Six subjects participated in the experiment. The mean
ues of all the observers are listed in Table 1. A grap
representation of the results will be given in Figs. 7 and
in Sec. 6, where a comparison with the metric defined
Sec. 4 is illustrated. Generally, the error diffusion patte
resulted in overall smallest distances. This means that
error diffusion patterns had the least amount of visibil
among all the types of patterns. The dot-off-dot~mutually
exclusive masks! outperformed the dot-on-dot patterns, e
pecially for the gray patches. For the Bayer’s patterns
optimal levels, for example, at 25%, 50%, and 75%,
ctronic Imaging / April 2002 / Vol. 11(2)
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visibility was very low. However, for other levels of Bay
er’s patterns, the visibility was very high, particularly fo
some color patterns.

6 Discussion

6.1 Correlation Between the Metric and
Experimental Results

A threshold factor of 1/40 was used as factorc in Eq. ~16!.
This fraction is in the range of a typical factor for perce
tion by eye.20,32 From the calculations and a compariso
with the experimental data, a factor of 1/40 was found to
the most suitable to define the visual threshold factor.
this paper, the intensities were scaled according to the
erence white point on the monitor, which was normaliz
to 1. The threshold is a fraction of the square root of t
intensity, so the factor should be multiplied by a scale fa
tor if another intensity unit is used or if the dynamic ran
of the display or printing device is changed. There are ot
two factors, both for the chrominance CSF, that were de
mined empirically. One is the factor of spatial frequencyf r
~3 in this case!, and the other is the factor of the magnitud
of the CSF~0.9 in this case!. The factors were determine
to ensure that the two CSF functions possess the fundam
tal characteristics of achromatic and chromatic vision a
that they are consistent with the CSF depicted in rela
erms of Use: http://spiedl.org/terms
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work.25–27 Also, the two factors were adjusted within
small range during metric development, and they had
large effect on the results of the metric predicted so
CSF again is found to provide a useful description of
achromatic and chromatic characteristics of the visual s
tem in this case.

It can be seen that a strong similarity exists between
procedure for the experiment and the algorithm to der
the critical viewing distance. The algorithm can be cons
ered as simulating the process of walking back and fo
and adjusting to the position at which the observer c
barely discriminate the texture. Changing the viewing d
tance causes a shift of the HVS model in the discrete
quency domain, and thus causes a change in frequency
tent that could be captured by the eye. As the obse
walks closer to the monitor, the spatial variation of t
pattern increases, and the critical distance is that where
total error just exceeds the visual threshold.

The experimental results and the distances calculate
the proposed metric are illustrated in Figs. 7 and 8. Thx
axes in Figs. 7 and 8 are the distances predicted by
metric, and they axes are the experimental results. Figur
illustrates the mean values for all the observers versus
predicted values. Figure 8 is the same as Fig. 7 except
standard deviations are included. By inspecting Figs. 7
8, it can be seen that a good linear correlation exists
tween the experimental results and the metrics. The lin
correlation coefficient of the data isr 50.88.

The standard deviation of the images was used as
average of the increment in intensity versus the unifo
background. Kaiser and Boynton have discussed the is
of interaction between opponent color channels33 and they
specified the empirical rule for the interaction as:

F5@ ur 2gun1uy2bun#1/n, ~20!

whereF is the overall effect caused by the R-G channel a

Fig. 7 Mean experimental results vs the distance from the metric.
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Y-B channel, andn can be any positive integer. Whenn
51, the interaction is the sum of the two channels. This
the rule we applied in the calculation of the total errors
Eq. ~18!. If vector summation~corresponding ton52! is
used, because the luminance errors dominate the tota
rors, the effect of chrominance errors is practically elim
nated. In the case in which chrominance information is
nored by choosingn52, the correlation coefficient of the
data isr 50.84 instead ofr 50.88 whenn51. Although the
difference seems to not be significant, it is not sufficient
model the perception of color halftone patches with lum
nance only, so scalar summation is used to estimate
overall error in our model. For image quality metrics, the
are other techniques with which to evaluate the overall
ror from all the channels according to the specific appli
tions. For example, Daly employed the method of proba
ity summation to calculate the overall influence of erro
from all the bands in the algorithm of visible difference
predictor.7

6.2 Discussions on the Experiment

At the average distance, which was about 14 ft, the stim
subtended an angle of 2°. The experiment is not a fix
distance experiment, so adjustment of the viewing distan
caused changes in focal length. The 5% and 95% value
the distances measured in the experiment are 10 and 1
which is equal to 3 and 5.1 m, respectively. The change
focal length between these two distances is about 0.14
This is a small number, so the effect of accommodation
be ignored.

6.3 Application of the Metric

This experiment is not intended to study the strict con
tions of the visual threshold function of halftone patterns
emphasizes that the metric developed by this model
faithfully predict the texture visibility of color halftone pat

Fig. 8 Average and standard deviations of the experimental results
and the distance from the metric.
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terns. The intensity levels tested in this experiment w
from about 8 to 50 cd/m2. For hardcopy prints illuminated
by typical office lighting, the luminance may be beyond t
range tested using the cathode ray tube~CRT! display. For
intensity higher than 50 cd/m2 or lower than 8 cd/m2, the
validity of the de Vries–Rose law is not verified, nor is
guaranteed. Our suggestion is to use a smoothly chan
threshold function that combines the de Vries–Rose
and Weber’s law when necessary. However, for a sm
dynamic range, e.g., one from 50 to 70 cd/m2, the differ-
ence in threshold determined by de Vries–Rose’s law
by Weber’s law is not significant, so de Vries–Rose law c
be extended to the application at intensity levels hig
than 50 cd/m2.

The halftone patterns generated by different techniq
usually have some distinct characteristics. For exam
Bayer’s dithering generates periodic patterns. These
terns are optimal at some levels, whereas the patterns
be quite visible for other levels. The patterns generated
error diffusion and the blue noise mask also have so
different features, although they are both blue noise gen
tors. Despite the various halftone characteristics, our me
is capable of producing good predictions for all cases.
though the patterns selected in the experiment may not
resent halftone techniques in general, the approach is i
pendent of the texture characteristics and thus can app
various halftone techniques.

Increasing the viewing distance will have approximate
the same effect as increasing the print or display resolu
in the case for which the perceived halftone images un
the condition that there are no significant dot gain or f
quency modulation effects. This is because the scaling
tor of converting discrete frequency to continuous f
quency is the product of the print resolution and viewi
distance. In our experiment, the quality is evaluated by
critical distance. It can also be used to find out the criti
resolution if a typical viewing distance is assumed. If th
model is used under given conditions, such as a gi
viewing distance and display resolution, a single num
output will be produced to indicate whether the texture v
ibility is under or above the threshold.

This metric can be a guide to evaluating the quality
the resulting halftone patterns. Assessment of texture
ibility of halftone patterns is usually based on an asse
ment of uniform halftone patches. Comparison of the ha
tone images of a gray ramp is a basic and import
evaluation in most halftone evaluations. A blue noise dit
matrix is actually composed of binary halftone images at
the gray levels. The overall quality of the blue noise ma
can be obtained by inspecting the critical distances of
the levels. For example, Bayer’s dithering is proved to
optimal at some specific levels but it does not necessa
indicate that the Bayer’s matrix is optimal as a whole. T
metric can be applied directly to quality assessment of h
tone patterns of solid patches, and thus can aid in blue n
mask design.

7 Conclusion

It this paper, we proposed a simple but fundamental m
surement of color halftone texture visibility at the thresho
level. Represented by the critical viewing distance at wh
the halftone textures can just be discriminated, this me
204 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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has been shown to correlate well with the experimen
results. The potential application of this metric is not lim
ited to a comparison of the quality of uniform color hal
tone patches. As was mentioned earlier in this paper, it
be incorporated into halftone algorithms as an object
quality assessment in addition to the FWMSE, or as a
terion for simultaneous optimization of the blue noi
mask.
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